
A PROOFS
A.1 Proof of Lemma 4.2
We restate Lemma 4.2 as follows.

Lemma A.1.
←
𝐶 𝜋
𝑘
(𝑥𝑡 , 𝑎𝑡)

𝐷
= 𝐶𝜋

𝑘
(𝑥𝑡−𝑘 , 𝑎𝑡−𝑘),∀𝑘 ∈ N.

Proof. With the backward Markov chain characterized by

←
𝑝 𝜋

, the probability for 𝑘-step trajectory from any state 𝑥𝑡 is

←
𝑝 𝜋 (𝑎𝑡 , 𝑥𝑡−1, 𝑎𝑡−1, · · · , 𝑥𝑡−𝑘 , 𝑎𝑡−𝑘 |𝑥𝑡)

= 𝜋 (𝑎𝑡 |𝑥𝑡) ·
←
𝑝 𝜋 (𝑥𝑡−1 |𝑥𝑡) · 𝜋 (𝑎𝑡−1 |𝑥𝑡−1) · · · · ·

←
𝑝 𝜋 (𝑥𝑡−𝑘 |𝑥𝑡−𝑘+1) · 𝜋 (𝑎𝑡−𝑘 |𝑥𝑡−𝑘)

= 𝜋 (𝑎𝑡 |𝑥𝑡) · 𝑝𝜋 (𝑥𝑡 |𝑥𝑡−1) ·
`𝜋 (𝑥𝑡−1)
`𝜋 (𝑥𝑡)

· 𝜋 (𝑎𝑡−1 |𝑥𝑡−1) · · · · · 𝑝𝜋 (𝑥𝑡−𝑘+1 |𝑥𝑡−𝑘) ·
`𝜋 (𝑥𝑡−𝑘)
`𝜋 (𝑥𝑡−𝑘+1)

· 𝜋 (𝑎𝑡−𝑘 |𝑥𝑡−𝑘)

=
`𝜋 (𝑥𝑡−𝑘)
`𝜋 (𝑥𝑡)

𝑝𝜋 (𝑎𝑡−𝑘 , 𝑥𝑡−𝑘+1, · · · , 𝑎𝑡−1, 𝑥𝑡 , 𝑎𝑡 |𝑥𝑡−𝑘),

where in the second equationwe utilize the Bayesian’s rule. This result shows that the forward probability for the trajectory (𝑥𝑡−𝑘 , 𝑎𝑡−𝑘 , · · · , 𝑥𝑡 , 𝑎𝑡)
under policy 𝜋 is equivalent to the probability of sampling a state 𝑥𝑡 from the stationary distribution `𝜋 and obtaining the trajectory

(𝑥𝑡 , 𝑎𝑡 , · · · , 𝑥𝑡−𝑘 , 𝑎𝑡−𝑘) via the backwards chain. Given that the cost function is deterministic, thus, the accumulated cost also has the same

distribution in the forward view and the backward view. □

A.2 Proof of Lemma 4.3
We restate Lemma 4.3 as follows.

Lemma A.2.
←
T𝜋
𝑐 is a contraction mapping in the Wasserstein distance and

←
𝐶 𝜋 is the fixed point, i.e.,

←
𝐶 𝜋 =

←
T𝜋
𝑐

←
𝐶 𝜋 .

Proof. We use the same technique from [5]. With the finite-horizon 𝑇 , we can convert it to an infinite-horizon setting with 𝛾 = 1 − 1/𝑇 .
We will show that

←
T𝜋
𝑐 is a 𝛾-contraction mapping in the Wasserstein distance.

Given two random variables𝑈 ,𝑉 with cdfs 𝐹𝑈 , 𝐹𝑉 , the Wasserstein distance 𝑑𝑝 is defined as follows.

𝑑𝑝 (𝑈 ,𝑉) := 𝑑𝑝 (𝐹𝑈 , 𝐹𝑉) =
(∫

1

0

��𝐹−1

𝑈 (𝑢) − 𝐹
−1

𝑉 (𝑢)
��𝑝𝑑𝑢)1/𝑝

.

For any two distributions

←
𝐶 1 (𝑥, 𝑎) and

←
𝐶 2 (𝑥, 𝑎), we define the maximal form of the Wasserstein distance as follows.

¯𝑑𝑝 (
←
𝐶 1,
←
𝐶 2) = sup

𝑥,𝑎
𝑑𝑝 (
←
𝐶 1 (𝑥, 𝑎),

←
𝐶 2 (𝑥, 𝑎)) .

Then,

𝑑𝑝 (
←
T𝜋
𝑐

←
𝐶 1 (𝑥, 𝑎),

←
T𝜋
𝑐

←
𝐶 2 (𝑥, 𝑎)) = 𝑑𝑝 (𝑐 (𝑥, 𝑎) + 𝛾

←
𝐶 1 (𝑥 ′, 𝑎′), 𝑐 (𝑥, 𝑎) + 𝛾

←
𝐶 2 (𝑥 ′, 𝑎′))

≤ 𝛾𝑑𝑝 (
←
𝐶 1 (𝑥 ′, 𝑎′),

←
𝐶 2 (𝑥 ′, 𝑎′))

≤ 𝛾 sup

𝑥,𝑎
𝑑𝑝 (
←
𝐶 1 (𝑥, 𝑎),

←
𝐶 2 (𝑥, 𝑎)).

Thus,

¯𝑑𝑝 (
←
T𝜋
𝑐

←
𝐶 1,
←
T𝜋
𝑐

←
𝐶 2) = sup

𝑥,𝑎
𝑑𝑝 (
←
T𝜋
𝑐

←
𝐶 1 (𝑥, 𝑎),

←
T𝜋
𝑐

←
𝐶 2 (𝑥, 𝑎))

≤ 𝛾 sup

𝑥,𝑎
𝑑𝑝 (
←
𝐶 1 (𝑥, 𝑎),

←
𝐶 2 (𝑥, 𝑎))

= 𝛾 ¯𝑑𝑝 (
←
𝐶 1,
←
𝐶 2).

Hence, the operator

←
T𝜋
𝑐 is a contraction mapping, and

←
𝐶 𝜋

is the unique fixed point by inspection. □

A.3 Proof of Lemma 5.1
Lemma 5.1 is restated as follows.

Lemma A.3. For any trajectory {(𝑥𝑖 , 𝑎𝑖)}𝑇𝑖=0
generated by ∀𝜋 ∈ Π𝑛𝑠𝑡𝑎 , we have

𝐹−1

𝐶𝜋 (𝑥0,𝑎0) (𝜏) ≤ 𝐹−1

←
𝐶𝜋 (𝑥𝑡−1,𝑎𝑡−1)

(a) + 𝐹−1

𝐶𝜋 (𝑥𝑡 ,𝑎𝑡) (1 − a + 𝜏),

where 𝑡 ∈ [1, · · · ,𝑇], a ∈ [0, 1] is the quantile level of random variable
←
𝐶 𝜋 (𝑥𝑡−1, 𝑎𝑡−1) at realization

∑𝑡 ′=𝑡−1

𝑡 ′=0
𝑐 (𝑥𝑡 ′ , 𝑎𝑡 ′), and 𝜏 ∈ [0, a].

Proof. We firstly consider the general case for any two random variables 𝑋 and 𝑌 with unknown dependency structure. From the theory

of copulas, there exists a copula 𝐶𝑋𝑌 (a,𝑤) = 𝑃𝑟 (𝑋 ≤ 𝐹−1

𝑋
(a), 𝑌 ≤ 𝐹−1

𝑌
(𝑤)), where a,𝑤 ∈ [0, 1] are quantiles.

With the Frechet-Hoeffding inequality, we have that

max(0, 1 − (1 − a) − (1 −𝑤)) ≤ 𝐶𝑋𝑌 (a,𝑤) ≤ min(a,𝑤) .

Let 𝜏 = 1 − (1 − a) − (1 −𝑤) and fix 𝜏 . Then, 𝑣 = 1 − a + 𝜏 with a ∈ [𝜏, 1]. Apply the left-hand side of the Frechet-Hoeffding inequality

again:

max(0, 𝜏) ≤ 𝐶𝑋𝑌 (a, 1 − a + 𝜏)
= 𝑃𝑟 (𝑋 ≤ 𝐹−1

𝑋 (a), 𝑌 ≤ 𝐹−1

𝑌 (1 − a + 𝜏))

That is, the probability that both 𝑋 and 𝑌 are below the value at quantile a and 1−a +𝜏 respectively is at least 𝜏 . In other words, we have that

𝐹−1

𝑋+𝑌 (𝜏) ≤ 𝐹−1

𝑋 (a) + 𝐹
−1

𝑌 (1 − a + 𝜏) . (5)

Hence, for the cost return random variable 𝐶𝜋 (𝑥0, 𝑎0), we can decompose it into two random variables 𝐶𝜋 (𝑥0, 𝑎0) =
∑𝑡−1

𝑡 ′=0
𝑐 (𝑥𝑡 ′ , 𝑎𝑡 ′) +∑𝑇

𝑡 ′=𝑡 𝑐 (𝑥𝑡 ′ , 𝑎𝑡 ′) for any 𝑡 ∈ T , with 𝑥𝑡+1 ∼ 𝑝 (·|𝑥𝑡 , 𝑎𝑡), 𝑎𝑡 ∼ 𝜋 (·|𝑥𝑡). As stated in Sec. 4.2, the first part

∑𝑡−1

𝑡 ′=0
𝑐 (𝑥𝑡 ′ , 𝑎𝑡 ′) in right-hand-side

can be described by random variable

←
𝐶 𝜋 (𝑥𝑡−1, 𝑎𝑡−1), while the second part

∑𝑇
𝑡 ′=𝑡 𝑐 (𝑥𝑡 ′ , 𝑎𝑡 ′) can be described by random variable 𝐶𝜋 (𝑥𝑡 , 𝑎𝑡).

Apply inequality (5), we have that

𝐹−1

𝐶𝜋 (𝑥0,𝑎0) (𝜏) ≤ 𝐹−1

←
𝐶𝜋 (𝑥𝑡−1,𝑎𝑡−1)

(a) + 𝐹−1

𝐶𝜋 (𝑥𝑡 ,𝑎𝑡) (1 − a + 𝜏),∀𝑥𝑡 , 𝑎𝑡 ,

where a ∈ [0, 1], 𝜏 ∈ [0, a]. □

A.4 Proof of Theorem
The formal theorem and all assumptions are given as follows.

Theorem A.4. We firstly make the following assumptions.

• The state space S and action space A are discrete and finite;
• Each policy in Πnsta is log-Lipschitz in 𝜏 with coefficient 𝐿;
• Let setV = {𝑣𝑖 }𝑉𝑖=1

contain all possible values of the long-term cost of any full trajectory under any policy 𝜋 ∈ Πnsta, with each 𝑣𝑖 ranked,
i.e., 𝑣𝑖 > 𝑣 𝑗 ,∀𝑖, 𝑗 ∈ {1, · · · ,𝑉 }, 𝑖 < 𝑗 . Let setV𝑖 =

{
{(𝑠𝑡 , 𝑎𝑡)}𝑇𝑡=0

|∑𝑇
𝑡=0

𝑐 (𝑠𝑡 , 𝑎𝑡) = 𝑣𝑖
}
contain all trajectories that have the long-term cost 𝑣𝑖 .

Assume |V𝑖 | ≤ 𝑀,∀𝑖 ∈ {1, · · · ,𝑉 };
• 𝜋𝑘+1 (𝑎 |𝑥)

𝜋𝑘 (𝑎 |𝑥) ∈ [1 − 𝛿, 1 + 𝛿], 𝜋𝑘 (𝑎 |𝑥) > 0,∀𝑥, 𝑎 with 𝛿 ∈ [0, 1), and 𝐿 = 𝐿𝛿𝛿 for some 𝐿𝛿 ∈ R>0.

Then, if 𝑔𝑐 = Uniform([b, 1.0]), E𝑎0∼𝜋𝑘+1 (· |𝑥0)Φ𝑔𝑐
[
𝐶𝜋𝑘+1 (𝑥0, 𝑎0)

]
≤ 𝑑 + 𝐷 (𝛿,V, 𝑀, b,𝑇).

Proof. Let us firstly focus on one possible value of the long-term cost, say 𝑣𝑖 . The set of trajectories that has 𝑣𝑖 cost isV𝑖 , which has the

maximal cardinality𝑀 .

Let the trajectory that generates 𝑣𝑖 be {(𝑠𝑡 , 𝑎𝑡)}𝑇𝑡=0
. Assume for any policy 𝜋𝑘 and 𝜋𝑘+1, their trajectories to generate 𝑣𝑖 are {(𝑠𝑡 , 𝜏𝑘𝑡 , 𝑎𝑡)}𝑇𝑡=0

and {(𝑠𝑡 , 𝜏𝑘+1𝑡 , 𝑎𝑡)}𝑇𝑡=0
. Note that 𝜏𝑘𝑡 may not equal 𝜏𝑘+1𝑡 as the policy is different.

According to the log-Lipschitz of 𝜋𝑘+1, we have that��
log𝜋𝑘+1 (𝑎𝑡 |𝑠𝑡 , 𝜏𝑘+1𝑡) − log𝜋𝑘+1 (𝑎𝑡 |𝑠𝑡 , 𝜏𝑘𝑡)

�� ≤ 𝐿 · |𝜏𝑘+1𝑡 − 𝜏𝑘𝑡 | ≤ 𝐿,

where the second inequality uses the fact that the quantile levels are in [0, 1].

For policy 𝜋𝑘 and 𝜋𝑘+1, let the probability for trajectories {(𝑠𝑡 , 𝜏𝑘𝑡 , 𝑎𝑡)}𝑇𝑡=0
and {(𝑠𝑡 , 𝜏𝑘+1𝑡 , 𝑎𝑡)}𝑇𝑡=0

be 𝑝𝑘 and 𝑝𝑘+1. Then, we have that

log

𝑝𝑘+1
𝑝𝑘

= log

𝜋𝑘+1 (𝑎0 |𝑠0, 1)𝑝 (𝑠1 |𝑠0, 𝑎0)𝜋𝑘+1 (𝑎1 |𝑠1, 𝜏
𝑘+1
1
)𝑝 (𝑠2 |𝑠1, 𝑎1) · · · 𝜋𝑘+1 (𝑎𝑇 |𝑠𝑇 , 𝜏𝑘+1𝑇

)
𝜋𝑘 (𝑎0 |𝑠0, 1)𝑝 (𝑠1 |𝑠0, 𝑎0)𝜋𝑘 (𝑎1 |𝑠1, 𝜏

𝑘
1
)𝑝 (𝑠2 |𝑠1, 𝑎1) · · · 𝜋𝑘 (𝑎𝑇 |𝑠𝑇 , 𝜏𝑘𝑇)

= log

𝜋𝑘+1 (𝑎0 |𝑠0, 1)
𝜋𝑘 (𝑎0 |𝑠0, 1)

+ log

𝜋𝑘+1 (𝑎1 |𝑠1, 𝜏
𝑘+1
1
)

𝜋𝑘 (𝑎1 |𝑠1, 𝜏
𝑘
1
)
+ · · · + log

𝜋𝑘+1 (𝑎𝑇 |𝑠𝑇 , 𝜏𝑘+1𝑇
)

𝜋𝑘 (𝑎𝑇 |𝑠𝑇 , 𝜏𝑘𝑇)

= log

𝜋𝑘+1 (𝑎0 |𝑠0, 1)
𝜋𝑘 (𝑎0 |𝑠0, 1)

+ log

𝜋𝑘+1 (𝑎1 |𝑠1, 𝜏
𝑘+1
1
)

𝜋𝑘+1 (𝑎1 |𝑠1, 𝜏
𝑘
1
)
+ log

𝜋𝑘+1 (𝑎1 |𝑠1, 𝜏
𝑘
1
)

𝜋𝑘 (𝑎1 |𝑠1, 𝜏
𝑘
1
)
+ · · ·

+ log

𝜋𝑘+1 (𝑎𝑇 |𝑠𝑇 , 𝜏𝑘+1𝑇
)

𝜋𝑘+1 (𝑎𝑇 |𝑠𝑇 , 𝜏𝑘𝑇)
+ log

𝜋𝑘+1 (𝑎𝑇 |𝑠𝑇 , 𝜏𝑘𝑇)
𝜋𝑘 (𝑎𝑇 |𝑠𝑇 , 𝜏𝑘𝑇)

≤ 𝑇 (𝐿 + log(1 + 𝛿)).

Similar arguments can be applied to the reverse side. Thus, we have that 𝑒𝑇 (−𝐿+log(1−𝛿)) ≤ 𝑝𝑘+1
𝑝𝑘
≤ 𝑒𝑇 (𝐿+log(1+𝛿))

. Note that with 𝜋𝑘 (𝑎 |𝑥) >
0,∀𝑥, 𝑎, 𝑝𝑘 is also positive for any trajectory. Hence, when 𝑔𝑐 = Uniform([b, 1.0]), the maximal difference in E𝑎0∼𝜋𝑘 (· |𝑥0)Φ𝑔𝑐

[
𝐶𝜋𝑘 (𝑥0, 𝑎0)

]
will be the solution value to the following problem:

max

𝒚,𝒙

𝑉∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑣𝑖 · 𝑦𝑖, 𝑗 · 1{ 𝑗 ≤ |V𝑖 |} · 1
{ 𝑖−1∑︁
𝑖′=1

𝑀∑︁
𝑗 ′=1

𝑦𝑖′, 𝑗 ′ +
𝑗−1∑︁
𝑗 ′′=1

𝑦𝑖, 𝑗 ′′ ≤ 1 − b
}
−

𝑉∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑣𝑖 · 𝑥𝑖, 𝑗 · 1{ 𝑗 ≤ |V𝑖 |} · 1
{ 𝑖−1∑︁
𝑖′=1

𝑀∑︁
𝑗 ′=1

𝑥𝑖′, 𝑗 ′ +
𝑗−1∑︁
𝑗 ′′=1

𝑥𝑖, 𝑗 ′′ ≤ 1 − b
}

s.t.

𝑉∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑦𝑖, 𝑗 · 1{ 𝑗 ≤ |V𝑖 |} = 1

𝑉∑︁
𝑖=1

𝑀∑︁
𝑗=1

𝑥𝑖, 𝑗 · 1{ 𝑗 ≤ |V𝑖 |} = 1

𝑒𝑇 (−𝐿+log(1−𝛿)) ≤
𝑦𝑖, 𝑗

𝑥𝑖, 𝑗
≤ 𝑒𝑇 (𝐿+log(1+𝛿)) , 𝑥𝑖, 𝑗 > 0,∀𝑖 ∈ {1, · · · ,𝑉 }, 𝑗 ≤ |V𝑖 |.

(6)

The problem has no closed-form solution, and we denote its solution as 𝐷 (𝛿,V, 𝑀, b,𝑇) to emphasize the dependence. Moreover, such

difference is tight as 𝐷 (0,V, 𝑀, b,𝑇) = 0 if we assume 𝐿 = Θ(𝛿), for example, 𝐿 is linear with 𝛿 . Note that the first term in the objective is

just E𝑎0∼𝜋𝑘+1 (· |𝑥0)Φ𝑔𝑐
[
𝐶𝜋𝑘+1 (𝑥0, 𝑎0)

]
, and the second term is E𝑎0∼𝜋𝑘 (· |𝑥0)Φ𝑔𝑐

[
𝐶𝜋𝑘 (𝑥0, 𝑎0)

]
. From lemma 5 and the inequality in DCPI we

know that

E𝑎0∼𝜋𝑘+1 (· |𝑥0)𝐹
−1

𝐶𝜋𝑘 (𝑥0,𝑎0) (𝜏) ≤
𝑑

𝑔𝑐 (𝜏)𝐻 (𝑔𝑐)
,∀𝜏 .

Then, we have that

E𝑎0∼𝜋𝑘+1 (· |𝑥0)Φ𝑔𝑐
[
𝐶𝜋𝑘 (𝑥0, 𝑎0)

]
= E𝑎0∼𝜋𝑘 (· |𝑥0)Φ𝑔𝑐

[𝜋𝑘+1 (𝑎0 |𝑥0)
𝜋𝑘 (𝑎0 |𝑥0)

·𝐶𝜋𝑘 (𝑥0, 𝑎0)
]

≥ (1 − 𝛿)E𝑎0∼𝜋𝑘 (· |𝑥0)Φ𝑔𝑐
[
𝐶𝜋𝑘 (𝑥0, 𝑎0)

]
,

and E𝑎0∼𝜋𝑘 (· |𝑥0)Φ𝑔𝑐
[
𝐶𝜋𝑘 (𝑥0, 𝑎0)

]
≤ 𝑑

1−𝛿 . Thus, we have that E𝑎0∼𝜋𝑘+1 (· |𝑥0)Φ𝑔𝑐
[
𝐶𝜋𝑘+1 (𝑥0, 𝑎0)

]
≤ 𝑑

1−𝛿 + 𝐷 (𝛿,V, 𝑀, b,𝑇).
□

B ENVIRONMENTS AND EXPERIMENTS
All experiments are done with NVIDIA GeForce RTX 2080 Ti GPU. 4 random seeds are used in safety gym benchmarks and the two hard

constrained environments.

B.1 High Income High Risk Environment
In CVaR constrained HIHR, the CVaR level is 0.0, 0.5, 0.9, respectively. We solve HIHR with brute-force (up to 0.001 approximation error) by

enumerating 𝛼 . Note that for the stationary policy class Πsta, its limitation lies in that it can only set one 𝛼 for state 𝑠1 and sample actions

from the same bernoulli distribution every time visiting 𝑠1 along the trajectory. In contrast, each policy in class Πnsta could set different 𝛼

every time visiting 𝑠1, as it has different quantile levels every time visiting 𝑠1.

More specifically, we ignore the edge from 𝑠2 to 𝑠0, and enumerate all possible long-term cost in HIHR: 8, 11, 14, 17, 21, 25. For the

stationary policy class, it can only have one 𝛼 value. Hence, the probability for each long-term cost is 𝛼𝑘 · (1 − 𝛼), with 𝑘 ∈ {0, 1, 2, 3, 4, 5}.
We enumerate 𝛼 with interval 0.0001 for efficiency. For the quantile-level-driven policy class, it can set different 𝛼 values every time visiting

𝑠1, as agent always has different quantile levels for each visitation at 𝑠1 along any trajectory. Hence, the probability for each long-term cost is

1 − 𝛼1, (1 − 𝛼2) · 𝛼1, (1 − 𝛼3) · 𝛼1 · 𝛼2, · · · . We enumerate each 𝛼1, 𝛼2, · · · with interval 0.1 for efficiency. After that, we select the assignment

that satisfies the constraint and maximizes the expected reward as the optimal solution. The results of the expected reward and solved 𝛼

values are shown in Table 3 and 4, respectively.

Risk Measure Πsta Πnsta

b = 0.0 15.00 15.00

b = 0.5 12.07 14.40

b = 0.9 9.40 13.93

Table 3: Maximal expected reward of the feasible policy under different b in HIHR.

Risk Measure Πsta Πnsta

b = 0.0 0.73 0.80, 0.90, 0.60, 0.60, 0.10

b = 0.5 0.58 0.50, 0.90, 0.90, 0.90, 0.60

b = 0.9 0.32 0.90, 0.90, 0.10, 0.90, 0.90

Table 4: The solved 𝛼 values in HIHR, with 2 decimal points reserved.

B.2 Two-way Selection Environment
B.2.1 RAC Details. In the two-way selection environment, we use linear function approximators for both policy and (forward and backward)

distributional critics. Formally, we use the following policy in experiments:

𝑝𝑜𝑙𝑖𝑐𝑦 (𝑠, 𝜏) = 𝑤𝑇
1
∗ 𝑠 +𝑤2 ∗ 𝜏,

where𝑤1 ∈ R6×2
,𝑤2 ∈ R2

. A softmax layer is followed behind 𝑝𝑜𝑙𝑖𝑐𝑦 to generate the action-selecting distribution, with temperature 0.04.

The reward critic, cost distributional critic and IBDC use the following linear function approximator:

𝑐𝑟𝑖𝑡𝑖𝑐 (𝑠, 𝑎, 𝜏) = 𝑤1 ∗ 𝜏 +𝑤𝑇
2
∗ 𝑠 +𝑤𝑇

3
∗ 𝑎,

where𝑤1 ∈ R,𝑤2 ∈ R6
,𝑤3 ∈ R2

. Such linear function approximator is in fact class F𝑙𝑖𝑛𝑒𝑎𝑟 introduced in Sec. 4.2 for IBDC, and we make it

valid for outputting the quantile levels by adding a sigmoid layer after the output with weight 0.2.

Thresholds for b ∈ {0.0, 0.9} are both 40. The learning rate for policy and critics are all 0.01. ^ in the Huber quantile regression loss is 5

for all critics. 𝐿2 regularizations are also added for policy and critics to avoid overlarge weights.

B.3 Constrained Four Room Environment
B.3.1 Environment Details. The constrained four room environment (CFR) is an extension of the classical four room environment [13], as

shown in Fig. 7. CFR consists of 11*11 grids, and each grid may have reward sign, cost sign, wall or empty. The starting grid is grid S, the

goal grid is G, and grid V is labeled for visualization. The goal grid is absorbing, i.e., agent cannot get away from G once he visited there. The

total horizon is 100. At each step, agent can move to one of its neighboring grids with direction up, right, down or left. The move is successful

only if the next grid is within CFR and is not a wall (i.e., black grid). Agent also gets reward -1 when unsuccessful move is made. When the

next grid has a solid circle sign, a solid square sign or a solid triangle sign, agent gets reward 10, 5, 1, respectively. When the next grid has a

hollow stop sign, agent gets cost 1. The rewarding signs will disappear once being visited, while the stop signs will stay the same. Finally,

the negative Manhattan distance from agent’s location to grid G also counts as the reward at step 100. When agent locates at grid G at step

100, he also get bonus reward 20.

In CFR, each state has 4 dimensions, and each dimension is a 11*11 matrices. The first dimension contains the unvisited rewarding signs;

the second dimension contains the locations of the cost signs; the third dimension contains the locations of the walls; the final dimension

contains the location of the agent. Action space of each grid is {up, right, down, left}.

Figure 7: Illustration of the CFR environment.

B.3.2 RAC Details. In CFR, the reward critic has 2 convolutional layers and 3 linear layers with leaky relu activation function. The policy

has 2 convolutional layers and 3 linear layers with leaky relu activation function, with an extra 2-layer network for the inputted quantile

level. A softmax layer is added to the output of policy to generate the discrete action distribution with dimension 4. The forward cost critic

has a 𝑐𝑜𝑠 function with 8 scales of 𝜋 to generate embeddings for the sampled 𝜏 . All three networks in IBDC class F𝑛𝑛 use 3 linear layers with

relu activation function. ^ is set as 10. The clip threshold is 0.2. The learning rates for policy and critics are 0.0001 and 0.0003, respectively.

The policy learning rate decays linearly as training proceeds. The Lagrangian multiplier is initialized as 0 and has learning rate 0.01. The

maximal Lagrangian multiplier is 100. The target networks of forward cost critic and IBDC are updated every 2 epoch with ratio 0.1, and the

policy network changes with ratio 0.4 for each update.

B.4 Safety Gym Benchmarks
B.4.1 Environment Details. We also test RAC on two safety Gym benchmarks [1]: PointGoal1 and CarGoal1. The goal of PointGoal1 is to

push the cubic box into the green cylinder, while avoiding the blue unsafe regions, as shown in Fig. 8. The state space of PointGoal1 has

dimension 60, and the action space has dimension 2. The goal of CarGoal1 is to control a robot with two independently-driven parallel

wheels and a free-rolling rear wheel to push the cubic box and avoid unsafe regions, as shown in Fig. 9. The state space of CarGoal1 has 72

dimensions, and the action space has 2 dimensions. Both benchmark has maximal 1000 steps, and the threshold remains 𝑑 = 25 for each

b ∈ {0.1, 0.5, 0.9}.

Figure 8: Illustration of the PointGoal1 environment.

Figure 9: Illustration of the CarGoal1 environment.

B.4.2 RAC Details. In PointGoal1, the reward critic is implemented with 4 linear layers with elu activation function. The action distribution

is a normal distribution, whose mean is the output of the policy network, and its std is decayed stepwise. The policy network also has 4

linear layers with elu activation function, with an extra 2-layer network for inputted quantile level. The forward cost critic follows the

network architecture of IQN in [12], where a 𝑐𝑜𝑠 function with 8 scales of 𝜋 is used for generating embeddings for the sampled 𝜏 . All three

networks in IBDC class F𝑛𝑛 use 3 linear layers with elu activation function. ^ in the Huber quantile regression loss is 1.0. The updated

is conducted every 200 steps. The clip threshold is 0.01. The learning rates for policy and critics are 0.00005 and 0.0005, respectively. The

Lagrangian multiplier is initialized as 0 and has learning rate 0.05. The maximal Lagrangian multiplier is 100. The target networks of forward

cost critic and IBDC are updated every epoch with ratio 0.2, and the policy network changes with ratio 0.01 for each update.

In CarGoal1, the network structures are the same as those in PointGoal1. The clip threshold is 0.01. The learning rates for policy and

critics are 0.00002 and 0.0001, respectively. The Lagrangian multiplier is initialized as 0 and has learning rate 0.01. The maximal Lagrangian

multiplier is 100. The target networks of forward cost critic and IBDC are updated every epoch with ratio 0.2, and the policy network

changes with ratio 0.1 for each update.

B.5 Hard Constrained Environments
B.5.1 Environment Details. UAV Maneuvering (UAVM) [14, 31] has 6 Degrees of Freedom (DoF), with state dimension 13 and action

dimension 4. It controls a Unmanned Aerial Vehicle (UAV) to be close to the original point while avoiding the unsafety regions, as shown

in Fig. 10. Each state in UAVM can be represented by vector 𝑠 = [𝑝, 𝑣, 𝑞,𝑤] ∈ R13
, where 𝑝 ∈ R3

denotes the position, 𝑣 ∈ R3
denotes the

velocity. 𝑞 ∈ R4
denotes the unit quaternion for attitude and𝑤 ∈ R3

denotes the angular velocity with respect to the inertial frame. The action

is a 4-d vector, denoting the four rotating propellers of the quadrotor. The initial state of UAVM follows the setting of [31], which has position

(−8,−6, 9), velocity and angular velocity 0, and unit quaternion (1, 0, 0, 0). The unsafe region is {(𝑥,𝑦, 𝑧) | (𝑥 +4.5)2 + (𝑦 +4)2 ≤ 1,−2 ≤ 𝑧 ≤ 5}.
The threshold 𝑑 = 0.

Budgeted Load Balancing (BLB) environment generates the load balancing environment proposed by [17]. In BLB, the jobs come with

Poisson distribution (_ = 100), with sizes drawing from an uniform distribution (100 − 1000). BLB has 10 servers with different processing

rates, ranging linearly from 0.15 to 1.05. The state in BLB is a 12-d vector, where the first 10 dimensions represent the normalized job size

in the queue of each server, the 11-th dimension represents the normalized job size of the current incoming job, and the final dimension

represents the normalized working time. The action in BLB is choosing one server among {1, · · · , 10} to process the incoming job. The

reward is the number of uncompleted jobs times the elapsed time since the last action. Apart from maximizing reward return, BLB also

considers the budget limit for processing the jobs. Each server generates a computational expense when it begins to process a new job,

which equals the service rate of the server times the elapsed time of the new job. BLB requires the computational expense of all servers

during the episode to be no larger than the budget. The threshold 𝑑 = 90000.

B.5.2 RAC Details. In UAVM, the reward critic is implemented with 4 linear layers with elu activation function. The action distribution is a

normal distribution, whose mean is the output of the policy network, and its std is decayed stepwise. The policy network also has 4 linear

layers with elu activation function, with an extra 2-layer network for inputted quantile level. The forward cost critic follows the network

architecture of IQN in [12], where a 𝑐𝑜𝑠 function with 8 scales of 𝜋 is used for generating embeddings for the sampled 𝜏 . All three networks

in IBDC class F𝑛𝑛 use 3 linear layers with elu activation function. ^ in the Huber quantile regression loss is 1.0. The clip threshold is 0.2. The

learning rates for policy and critics are 0.00004 and 0.00004, respectively. The Lagrangian multiplier is initialized as 0 and has learning rate

0.02. The maximal Lagrangian multiplier is 100. The target networks of forward cost critic and IBDC are updated every 2 epoch with ratio

0.1 and 0.05, respectively, and the policy network changes with ratio 0.2 for each update. In UAVM, the three hyper-parameters of Saute is

𝑛1 = −20, 𝑛2 = −40, 𝑛3 = −80.

Figure 10: Illustration of the UAVM environment.

Figure 11: Illustration of the BLB environment.

In BLB, the reward critic has 4 linear layers with elu activation function. The policy has 3 linear layers with leaky relu activation function,

with an extra 2-layer network for the inputted quantile level. A softmax layer is added to the output of policy to generate the action

distribution. The forward cost critic has a 𝑐𝑜𝑠 function with 64 scales of 𝜋 to generate embeddings for the sampled 𝜏 . All three networks in

IBDC class F𝑛𝑛 use 3 linear layers with elu activation function. ^ is set as 0.1. The clip threshold is 0.2. The learning rates for policy and

critics are 0.00001 and 0.00001, respectively. The Lagrangian multiplier is initialized as 0 and has learning rate 0.05. The maximal Lagrangian

multiplier is 100. The target networks of forward cost critic and IBDC are updated every 2 epoch with ratio 0.25, and the policy network

changes with ratio 0.1 for each update. In BLB, the three hyper-parameters of Saute is 𝑛1 = −2.5, 𝑛2 = −5.0, 𝑛3 = −10.0.

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Limitations of Stationary Policies
	4 Invertible Backward Distributional Critics
	4.1 Backward Markov Chain and Backward Cost Distribution
	4.2 Invertible Backward Distributional Critic

	5 RAC with Decomposed Constrained Policy Improvement
	5.1 Decomposed Constrained Policy Improvement
	5.2 Practical Implementation

	6 Related Works
	7 Experiments
	7.1 Two-way Selection Environment
	7.2 Constrained Four Room Environment
	7.3 Safety Gym Benchmarks
	7.4 Simulations of Real-World Applications

	8 Conclusion and Discussion
	References
	A Proofs
	A.1 Proof of Lemma 4.2
	A.2 Proof of Lemma 4.3
	A.3 Proof of Lemma 5.1
	A.4 Proof of Theorem

	B Environments and Experiments
	B.1 High Income High Risk Environment
	B.2 Two-way Selection Environment
	B.3 Constrained Four Room Environment
	B.4 Safety Gym Benchmarks
	B.5 Hard Constrained Environments

