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Abstract
Achieving optimal order dispatching has been a long-standing chal-
lenge for online ride-hailing platforms. Early methods would make
shortsighted matchings as they only consider order prices alone as
the edge weights in the driver-order bipartite graph, thus harming
the platform’s revenue. To address this problem, recent works eval-
uate the value of the order’s destination region to be the long-term
income a driver could obtain in average in such region and incorpo-
rate it into the order’s edge weight to influence the matching results.
However, they often result in insufficient driver supplies in many
regions, as the values evaluated in different regions vary greatly,
mainly because the impact of one region’s value on the future num-
ber of drivers and revenue in other regions is overlooked. This paper
models such impact within a cooperative Markov game, which in-
volves each value’s impact over the platform’s revenue with the
goal to find the optimal region values for revenue maximization.
To solve this game, our work proposes a novel goal-reaching col-
laboration (GRC) algorithm that realizes credit assignment from a
novel goal-reaching perspective, addressing the difficulty for accu-
rate credit assignment with large-scale agents of previous methods
and resolving the conflict between credit assignment and offline
reinforcement learning. Specifically, during training, GRC predicts
the city’s future state through an environment model and utilizes
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a scoring model to rate the predicted states to judge their levels
of profitability, where high-scoring states are regarded as the goal
states. Then, the policies in the game are updated to promote the
city to stay in the goal states for as long as possible. To evaluate GRC,
we deploy a baseline policy online in several cities for three weeks
to collect real-world dataset. Training and testing results on the
collected dataset indicate that our GRC consistently outperforms
the baselines in different cities and peak periods.
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1 Introduction
The advent of online ride-hailing platforms (e.g., Didi Chuxing,
Uber), providing on-demand car service, has greatly facilitated
people’s daily transportation. One of the most critical decisions
for a ride-hailing platform is order dispatching (OD), which aims to
match drivers and orders at each decision moment to maximize the
revenue of the platform.

In practice, a ride-hailing platform usually makes OD decisions
by performing matching on a constructed driver-order bipartite
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Figure 1: Comparisons of the edge weights used in different
methods. In each subfigure, the passenger orders from top
to bottom have price $10, $5, $20, respectively. (a) Methods
only take the price of the order as the edge weight. (b) Recent
works [22, 24, 25, 27] add a value that reflects the long-term
income a driver could obtain at the destination into the edge
weight. (c) Our work regards the value as the decision, and
utilizes the proposed GRC algorithm to incentivize the pol-
icy to reach the goal states as possible. The figure and the
descriptions in Sec. 1 utilize KM as the underlying matching
algorithm, while other algorithms, such as the GS algorithm,
can also be integrated in a similar way. Discount is not shown
in (b-c) for the sake of simplicity and clarity.

graph using Kuhn-Munkres (KM) [17] or Gale–Shapley (GS) [6]
algorithm. Specifically, the platform treats the available drivers and
orders to be served at each decision moment in a city as the nodes
of a bipartite graph, and constructs an edge between a driver node
and an order node if the driver is within a predefined distance from
the order. Naturally, the edge weights of such bipartite graph would
significantly influence the matching results. Early methods adopted
by the ride-hailing industry set the weight of each edge as the price
of the order on it, as shown in Fig. 1(a). However, such methods do
not take into account the future demands in each order’s destination,
andmight match drivers to suburbs for short-term gains, potentially
reducing the platform’s future revenue.

To avoid making such myopic decisions, recent works [22, 24,
25, 27] define the destination value of an order to be the long-term
income a driver could obtain in average in the order’s destination
region, and add the discounted value into the edge weights, as illus-
trated in Fig. 1(b). However, these works tend to reduce the number
of vehicles in the cold regions within the city, leading to a shortage
of drivers available to serve passengers, and consequently, a loss in
revenue. This is because under these works, a few hot regions will
have exceptionally high destination values, significantly surpassing
other regions. The result of this immense disparity is that when
such values are included in the edge weights of the KM algorithm,

nearly all drivers will be matched to orders heading for the hot
regions, whereas very few or even no drivers will get orders going
to the cold regions. Given that real-world cities often contain a
large number of cold regions, the cumulative loss from each region
can result in significant revenue loss for the platform.

We argue that the primary reason for this result is that these
works evaluate the value of different regions at the same time step
independently of each other. However, the value of each region
can have significant impacts on the future revenue of other regions.
This is because when using these values for matching, the value of
one region will affect the edge weights of all orders heading to that
region. Furthermore, given the combinatorial nature of bipartite
matching, the value will affect the matching of orders heading to
other regions, thereby affecting the future number of drivers and
revenue of those regions, and thus the platform. As such, each
region must take into account the potential impacts of its value
on the revenue of other regions when setting its value, in order to
maximize the total platform’s revenue. Otherwise, as shown by the
aforementioned result, the excessively high value of a few regions
severely compromises the supply and revenue of other regions.

Based on the above analysis, this study aims to solve the prob-
lem FOVIR: Find the Optimal Value of each region, considering the
Impacts of each region’s value on other regions, in order to optimize
the platform’s Revenue. In order to consider such impacts to model
problem FOVIR, we use the cooperative Markov game, and we
design a cooperative multi-agent reinforcement learning (MARL)
algorithm to solve the game.

More specifically, in our game, each region is regarded as an
agent, and it will output actions based on the policy. The objective
of the game is to find the optimal policy to maximize total revenue.
In particular, such action output of each agent will be considered as
the value of each region. After discounting for future uncertainty,
the action will be added to the edge weight of orders heading to
that region, influencing the matching and future revenue. However,
directly using existing cooperative MARL algorithms to optimize
such policy presents two significant challenges.

• Difficulty for accurate credit assignment among large-scale agents.
Efficient and accurate credit assignment is at the core of coopera-
tive MARL algorithms, as it assesses each agent’s contribution to
the overall revenue and policies are optimized based on such esti-
mated contribution. However, previous researches [10, 26] have
found that in tasks involving a large number of agents, the credit
assignment based on the central critic is a challenging endeavor.
This is because the vast number of states and actions of multiple
agents will overwhelm the contribution of an individual agent’s
decision, making it difficult to estimate the latter effectively and
accurately.

• Conflict between credit assignment and offline reinforcement learn-
ing. Given the complex and dynamic nature of urban traffic con-
ditions, creating a simulator that is both highly accurate and
fast for generating large volume of samples for training online
reinforcement learning algorithms is a challenging task. Con-
sequently, we have opted for an offline reinforcement learning
training approach. However, such method raises conflict with
credit assignment: the former seeks to avoid sampling of actions
outside the dataset distribution (i.e., out-of-distribution actions
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[14]), while the latter relies on evaluating all possible actions and
calculating the advantage of a specific action [5, 28].

To address these challenges, our inspiration originates from the
following findings. Specifically, we find that in OD, in addition
to the straightforward performance indicator revenue, there are
several other indicators that can indirectly reflect the profitability
of the platform. For instance, a very low passenger cancellation
rate or a small supply-demand gap can indicate that a large number
of orders within the city are being served, thereby suggesting that
the platform is operating at a high level of profitability. In light
of this, we can consider other indicators such as supply-demand
gap, cancellation rate, and pick-up distance, in addition to revenue.
By encouraging the city to consistently maintain a high level in
these various indicators, we can optimize the overall revenue of
the platform. Based on this, we propose the goal-reaching collabo-
ration (GRC) algorithm to realize this idea, and it achieves credit
assignment from a completely new perspective of achieving goals,
overcoming the aforementioned challenges.

In GRC, we first train a scoring model, capable of determining
whether a city state performs well on various indicators, where
a city state at a certain time step refers to the vector that can
fully describe all drivers and orders in the city. Next, we train an
environment model that can combine the current city state and the
action decisions of agents to predict possible future states of the city.
Subsequently, the predicted states are fed into the scoring model
for rating, where a small batch of high-scoring states is selected as
the goal states, and the other states are regarded as ordinary states.
Finally, we optimize the policy by minimizing the gap between
ordinary and goal states, promoting the city to reach the goal states
in the future as possible and continuously maintain a high level on
various indicators.

Notably, GRC does not require a centralized critic. More impor-
tantly, the city goal states contain the local goal states of all region
agents. Therefore, when each region agent updates its policy to
reach its local goal state, the city’s overall goal state is consequently
achieved. Essentially, the negative of gap between each agent’s local
ordinary state and its local goal state represents the credit assigned
by the GRC. Furthermore, such credit is accurate, as GRC only
predicts the city state of the next time step. Such a relatively sim-
ple task allows the environment model to provide accurate credits
and update signals to the policy. Moreover, such credit assignment
avoids the need to sample and evaluate all possible actions, thus is
compatible with offline reinforcement learning.

To evaluate GRC, we firstly deploy the CVnet model [24] online
in several cities in China for 3 consecutive weeks during April
and May in 2023 to collect datasets for subsequent training and
testing. After a careful data cleaning procedure, the filtered dataset
has approximately 6M transitions. Then, we train our policy and
baselines upon the dataset, and test them with off-policy evaluation
and simulations. Through comparisons with various baselines and
validations via ablation studies, we verified the superiority of our
proposed algorithm across different cities and peak periods. In
summary, the main contributions of this paper can be summarized
as follows:

• Through an in-depth analysis of existing works for OD, we find
that they lack consideration of the impacts of the value in one

region to other regions, which leads to revenue loss. Instead, we
model such impacts from a brand-new perspective relying on
cooperative Markov games.

• Given that traditional credit assignments are difficult to accu-
rately estimate with a large number of agents, and their conflicts
with offline reinforcement learning, we propose the GRC algo-
rithm to solve the game, which achieves credit assignment from
a novel goal-reaching perspective.

• To support the training and testing of algorithms, we deployed
baseline method online in several cities in China for 3 weeks to
collect abundant datasets. In performance comparisons across
different cities and peak periods, our proposed GRC algorithm
demonstrated a consistent improvement over other baseline al-
gorithms.

2 Workflow and Formulation
2.1 Order Dispatching Workflow
In this study, the order dispatching is accomplished by a combina-
tion of two modules, namely the decision and the matching module.

Specifically, at each decision moment, each region agent will
output its action based on the policy. At each matching moment,
the platform collects the available drivers and unmatched orders to
construct a bipartite graph. For each order, the price of the order,
coupled with the discounted action of its destination region, is used
as the weight. Following this, either the KM or GS algorithm is
employed to match drivers and passengers based on the weights.
Subsequently, the successfully matched drivers will head to the
departure point of the order to pick up the passengers and trans-
port them to the order’s destination. Drivers who are not matched
might randomly reposition themselves in the city or temporarily go
offline. Unmatched passenger orders may continue to wait for the
next matching step or get cancelled by the passengers. In the fol-
lowing sections, we will introduce the details of the Markov game
describing the decision module and the details of the matching
algorithm used in the matching module.

2.2 Problem Formulation for FOVIR
In this section, we present our OD-oriented Cooperative
Markov Game (ODCMG) for FOVIR, which is defined by tuple
⟨T ,N ,S,L,A, 𝑃, 𝑟, 𝛾⟩, and each item is defined as follows.

• T denotes the time step (i.e., decision moment) set, where
T = {1, · · · ,𝑇 } and 𝑇 is the number of time steps in OD. The
geographic space of the city is divided into hexagon grids, with
each hexagon being considered as an agent in ODCMG. Set N
includes all such agents.

• S denotes the global state space. For each 𝑠𝑡 ∈ S,∀𝑡 ∈ T , we
have 𝑠𝑡 = {𝑙𝑖𝑡 }𝑖∈N , where 𝑙𝑖𝑡 ∈ L denotes the local state of agent
𝑖 at step 𝑡 . In this work, 𝑙𝑖𝑡 contains the following aspects of grid:
id, the number of orders, the number of idle drivers, the number
of passenger cancellations and other statistics in the past three
time steps and the same time steps over the past two days.

• A is the joint action space of agents. For each agent 𝑖 ∈ N , it
will decide 𝑎𝑖𝑡 ∼ 𝜋𝑖 (·|𝑙𝑖𝑡 ), where 𝜋𝑖 is the policy of agent 𝑖 .
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Figure 2: The goal-reaching collaboration (GRC) framework. We emphasize that each agent takes the action independently in
ODCMG, while such procedure is simplified for clear illustration in the figure to a single path, which originates from state 𝑠𝑡
through policy 𝝅 to generate the joint action 𝒂𝒕 .

• At each step 𝑡 , each agent 𝑖 ∈ N gets local reward 𝑟 𝑖𝑡 that equals
the total price of orders that finish at grid 𝑖 at step 𝑡 , and the
summation of 𝑟 𝑖𝑡 over all agents constitute the global reward.

• Transition function 𝑃 determines the probability of state transi-
tions given the chosen actions, but it is unknown a priori. 𝛾 < 1
is the discount factor.

ODCMG aims to find the optimal joint policy 𝝅∗ that maximizes
the long-term global reward, i.e., the revenue of the platform. That
is, 𝝅∗ = argmax𝝅 E𝝅 [

∑𝑇
𝑡=1

∑
𝑖∈N 𝑟

𝑖
𝑡 ] is the solution for FOVIR.

It seems that one can directly apply cooperative MARL algo-
rithms [5, 16, 21, 28] to solve it and find the optimal policy 𝝅∗.
However, through an in-depth understanding of the online-hailing
platform, two major challenges limit the feasibility of such algo-
rithms. As discussed previously, when a large number of agents are
involved, it is difficult to obtain accurate credit assignment based on
a single reward signal. Secondly, credit assignment also raises con-
flict with offline reinforcement learning algorithms. In this work,
we propose GRC to address these challenges and efficiently solve
ODCMG, which will be introduced in the next section.

2.3 Matching Module
The outputted actions of each region agent will influence the sub-
sequent matching module as follows. For action 𝑎𝑖𝑡 of agent 𝑖 and
time step 𝑡 , the weight for each order 𝑜 that is heading to region 𝑖 is
defined as 𝜏𝑜 = 𝑅𝑜 +𝛾△𝑡𝑜𝑎𝑖𝑡 , where 𝑅𝑜 is the price of order 𝑜 , △𝑡𝑜 is
its duration. Then, when the underlying matching algorithm is KM,
order weight 𝜏𝑜 will serve as the weight for each edge connecting
to order 𝑜 , and KM will output the maximal weighted matching of
the bipartite graph. When the underlying matching algorithm is GS,
each driver’s preference list over the set of orders it is connected to
is obtained by decreasing the order weights. Similarly, each order’s
preference list over the set of drivers it is connected to is obtained
by increasing the pick-up distances. Then, GS is guaranteed to out-
put the stable matching that there is no driver-order pair where
both participants prefer each other to their matched ones.

We note that adopting weight 𝜏𝑜 here is due to its simplicity
and comprehensiveness. That is, such design of weight takes into
account both the price of the order and the duration of the order.
The longer the order lasts, the more uncertain the future is, so we
use exponential decay to lessen the impact of action on the weight
when the order lasts too long. We emphasize that how to integrate
the action into the weight is not the primary focus of this study,
and our ODCMG formulation and GRC algorithm can be adapted
to accommodate any alternative weight designs.

3 Method
In this section, we firstly take an overview of GRC. Then, the GRC
will be introduced in detail by elaborating its key components.
Finally, we conclude by presenting the policy training algorithm.

3.1 Overview of GRC Framework
The main idea underneath our framework comes from the specific
properties of OD. Typically, the platform runs monitoring programs
in each city to track real-time changes in multiple crucial indica-
tors, making it easier for administrators to manage and operate.
These indicators could indirectly reflect the platform’s revenue. For
example, when only small demand-supply gap exists in the city,
orders will be served in time and drivers rarely remain idle, since
the spatial distributions of drivers and orders are well-balanced.
When the cancellation rate from passengers keeps at a low level,
it represents that the pick-up distances between drivers and pas-
sengers are little, which improves the user experience and avoids
the loss of revenue. In other words, when a city performs well on
these crucial indicators, it reflects that the platform is in a high-
revenue state. Therefore, by optimizing policies to encourage cities
to sustain consistent high performance on these indicators, the
platform can ensure long-term revenue growth. Formally, we refer
to the states that have well-performing indicators as goal states,
and we design the GRC framework to generate such goal states and
incentivize and optimize the policies to reach them.
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Figure 3: Scores at different spatial ranges; illustrations of the encoder and decoder in environment model E.

The whole GRC framework is shown in Fig. 2. At any state
𝑠𝑡 , each policy 𝜋𝑖 takes local state 𝑙𝑖𝑡 and generates action 𝑎𝑖𝑡 for
each agent 𝑖 , and the actions are stacked into vector 𝒂𝑡 to ease
presentation. Then, the environment model E : S × A → S
takes both 𝑠𝑡 and 𝒂𝒕 as inputs and predicts 𝐾 possible next states
𝑠
𝑗

𝑡+1,∀𝑗 ∈ [1, · · · , 𝐾]. Further, the scoring model G : S → [0, 1]
rates each predicted states with a score. By ranking the predictions
with descending scores, we select the top 𝑘 ≪ 𝐾 predictions as
the goal states and leave others as the ordinary states. With such
discrimination, we optimize the policy to let those ordinary states
get closer to the goal states as possible. Hence, loss is defined as the
squared differences between ordinary states and goal states, and the
gradient signal is back propagated through the environment model
E to update the policy 𝜋 . The stop gradient operation is added to
remove the gradients from the goal states for stability concerns.

In summary, by predicting multiple next states and ranking
them with scores, GRC finds and annotates the goal states. To reach
such states, GRC optimizes the policy to close the gap between
ordinary and goal states. It’s worth noting that such global goal
state contains the local goal states of all agents. Therefore, when
each agent updates its policy to achieve its own local goal state,
the global goal state is also reached as a result. In this way, GRC
realizes credit assignment and incentivizes the cooperation among
all the agents. Compared to a single centralized reward signal, GRC
provides each agent with a separate updating signal, which is much
denser to estimate accurately and facilitates the optimization of
policies. Furthermore, as such credit is essentially the gap between
the goal states and ordinary states, it is free of sampling all the
possible actions, thus avoiding the OOD issues.

3.2 Scoring Model G
Namely, the mission of scoring model G is to rate each state by
a score within [0, 1] to show how good the state is. One intuitive
idea is to rate the state directly based on the indicators. For exam-
ple, a state has score 1 if and only if it has 0 cancelling rate and
0 demand-supply gap. However, such method is impractical as it
ignores the real-world limitations, mainly coming from the trans-
portation infrastructures. A more reasonable and practical method
is to compare the states in a city at the same time steps across
different days. By labelling the better state with a higher score and
the worse state with a lower one, model G can be trained to discrim-
inate the states and assign them with appropriate scores. In fact,
such recipe coincides with the reward model training procedure in
the recent success of large language models, such as InstructGPT
[19] and ChatGPT [18]. However, our recipe is much more easier as
we could utilize various application-specific rules to compare the
states, without collecting the expensive human comparison data.

Formally, we pre-select a set of application-specific crucial indi-
cators D, including the revenue, the cancelling rate, the demand-
supply gap and many others. In the experiment, we select 11 indica-
tors for D. Given any state pair (𝑠, 𝑠′), we firstly use each indicator
within set D to compare the state pair. For example, 𝑠 is scored 1 if
𝑠 has lower cancelling rate than 𝑠′, and 0 otherwise; 𝑠 is scored 1 if
𝑠 has smaller absolute demand-supply gap than 𝑠′, and 0 otherwise.
After traversing all the indicators in D, we sum their scores and
denote the aggregated scores as (𝑔,𝑔′) for pair (𝑠, 𝑠′). Finally, the
scoring model G is trained on a batch of state pairs and aggregated
scores using the following loss:

loss(𝜃 ) = 1
|D|E𝑠,𝑠′∼S [(𝑔

′ − 𝑔)G𝜃 (𝑠) + (𝑔 − 𝑔′)G𝜃 (𝑠′)],
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where 𝜃 is the parameters of model G, and the gap between 𝑔 and
𝑔′ is used as the weight to strengthen the difference in scores.

3.3 Environment Model E
The environment model E takes the current global state and the cho-
sen actions as input to predict the possible next states. In this work,
we further enhance the representation ability of E by exploiting
the spatial properties of scores.

In fact, the scoringmodelG introduced in Sec. 3.2 is defined in the
city-scale range, while scoringmodels of other spatial range, such as
grid-wise range, can also be defined. The left figure of Fig. 3 shows
the scores when different spatial range is considered. Formally, we
denote G1

𝜙1
as the scoring model of each grid’s local state, and G2

𝜙2
as the scoring model of each grid’s aggregated local state within 1-
hop neighbors... 𝜙1 and 𝜙2 are the parameters, and they are trained
similarly as G. As each grid has possibly distinct local state, the
scores of the aggregated local state within different spatial range
may be entirely different. Hence, integrating such hierarchical and
informative scores intomodel E will be greatly helpful for themodel
to understand the spatial causality for goodness of a state and how
its components are related to the scores. With such understanding,
model E masters the ability to discriminate the states and predict
them accordingly.

The architecture of model E is shown in the right figure of Fig.
3. For each step 𝑡 , the encoder firstly takes the local states {𝑙𝑖𝑡 }𝑖∈N ,
actions 𝒂𝑡 and the scores of the local states G1,𝑡 as input1, and
generates the latent representation 𝑥1 by a graph neural network
(GNN). Later, the scores of each grid’s aggregated local state within
1-hop neighbors G2,𝑡 are further combined with the latent repre-
sentation 𝑥1 to generate the second-layer latent representation 𝑥2
by GNN... After 𝑀 layers’ processing, we obtain the parameters
of the distribution over 𝑥𝑀 . The decoder takes samples from the
distribution, and decodes to the latent representation 𝑑𝑀 and the
predicted score Ĝ

𝑀,𝑡+1
. Then, 𝑑𝑀 is used for the next decoding to

generate 𝑑𝑀−1 and the predicted score Ĝ
𝑀−1,𝑡+1

... After𝑀 layers’
decoding, we obtain the predicted local states {𝑙𝑖

𝑡+1}𝑖∈N and the

predicted score Ĝ
1,𝑡+1

. Given a batch of sampled steps B, model
E𝜒 is trained with the following loss:

loss(𝜒) = 1
|B|

∑︁
𝑡 ∈B

(
∑︁
𝑖∈N

∥ 𝑙𝑖𝑡+1 − 𝑙
𝑖
𝑡+1 ∥22 +

𝑀∑︁
𝑚=1

(G𝑚,𝑡+1 − Ĝ
𝑚,𝑡+1)2

+ KL(latent dist. ∥ N (0, I))),

where each item represents the state prediction error, the score pre-
diction error and the regularization of the latent space, respectively.

When updating policies, we will sample 𝐾 latent representations
for each input 𝑠𝑡 and 𝒂𝑡 , and decode them to 𝐾 predicted next
states. One might argue that the 𝐾 predicted next states could
become too similar to each other when model E𝜒 is trained with
high precision, which could potentially compromise the subsequent
policy optimization. However, our findings suggest that the states
derived from the real-world dataset exhibit a high degree of variance.

1For each step 𝑡 and scoring model G 𝑗

𝜙𝑗
, we use notation G 𝑗,𝑡 to stack the scores of

all the grids.

This ensures that an accurately trained model E𝜒 will not merely
converge on predicting identical states.

3.4 Training Policy
With the trained scoring model G𝜃 and environment model E𝜒 ,
policy 𝜋𝛽 is optimized with a batch of sampled steps B by loss:

loss(𝛽) = 1
|B|

∑︁
𝑡 ∈B

(𝜆1
𝐾∑︁
𝑖=1

𝑘∑︁
𝑗=1

∥ 𝑠𝑖𝑡+1 − sg(𝑠 𝑗
𝑡+1) ∥

2
2 −

𝜆2
∑︁
𝑖∈N

log𝝅𝛽 (𝑎𝑖𝑡 |𝑙𝑖𝑡 )𝑄ℎ𝑖 (𝑙
𝑖
𝑡 , 𝑎

𝑖
𝑡 )) .

(1)

In the loss function, 𝛽 denotes the parameters of 𝝅 ,𝐾 is the number
of predictions from model E𝜒 , and the top-𝑘 predictions (w.r.t.
the scores rated by model G𝜃 ) are served as the goal states. The
remaining predictions are ordinary states, and their gaps are shown
as the first item of the loss. sg is the stop gradient operation. The
second item denotes the traditional policy gradient loss, where
𝑄ℎ
𝑖
(𝑙𝑖𝑡 , 𝑎𝑖𝑡 ) = E[

∑𝑇
𝑡 ′=𝑡 𝛾

𝑡 ′ ∑
𝑖∈Nℎ

𝑖
𝑟 𝑖
𝑡 ′ ] evaluates the long-term return

of agent 𝑖 in ℎ-hop range, and Nℎ
𝑖

denotes the set of agents in
ℎ-hop range of agent 𝑖 . 𝜆1 and 𝜆2 are weights for the two items. We
highlight that the second item only optimizes the local return of an
agent and is treated as a regularizer, which has a distinct difference
with the global objective in ODCMG. In experiments, we show the
effectiveness when optimizing policy with ℎ ≤ 3, while larger ℎ
may hinder the learning process.

Another noteworthy point is that GRC does not involve iter-
ative optimization of policies. In other words, once the policy is
optimized, it does not undergo retraining of a new E𝜒 for another
round of policy optimization. We adopted this single-round train-
ing approach primarily inspired by a class of one-step algorithms
in recent offline reinforcement learning [2, 13]. These algorithms
found that iterative policy updates require off-policy evaluation
steps, which may introduce bias and harm the training of policies.
However, it’s worth noting that our GRC algorithm can also be
combined with other offline reinforcement learning algorithms,
while this is beyond the focus of this work.

4 Experiments
4.1 Dataset Collection
To support the training of GRC, we first deployed the CVnet [24]
model as the behavior policy online to collect a real-world dataset.
After training of CVnet, we deployed it in several cities in China for
a period of three weeks during April and May in 2023. During this
time, we recorded the local states, actions, and rewards of each grid
at each time step in real-time. After data cleaning, filtering out holi-
days, and other outliers, our offline dataset contains approximately
6 million transitions. Subsequently, we partitioned the dataset for
the training and testing of algorithms.

4.2 Evaluation Methods
To evaluate the policies over the real-world dataset and the gen-
eralization ability over the bootstrapped dataset, we employ two
different testing methods. The first one is Off-Policy Evaluation
(OPE) [14, 20], a type of method used for assessing the performance
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Table 1: OPE results in city A and B. Testing is conducted on a 5-day dataset, and each entry represents the mean and standard
deviation of these tests. IORR and IGMV are the improved ratios in ORR and GMV respectively, when compared to the behavior
policy estimated from the dataset.

City Algorithm All Day Morning Peak (06:30-09:30) Evening Peak (16:30-19:30)
IORR (%) IGMV (%) IORR (%) IGMV (%) IORR (%) IGMV (%)

A

IPPO -4.02±4.99 -3.73±1.42 -4.85±5.08 -5.72±4.68 0.22±15.09 2.62±12.18
MAPPO -3.85±5.61 -3.75±1.33 -4.59±5.30 -6.41±4.51 0.42±14.51 0.47±11.79

IL 3.43±4.99 2.72±1.28 0.11±3.84 0.01±4.25 1.99±16.31 -1.56±11.93
LC-l1 2.59±5.18 2.07±1.28 -0.03±3.93 -1.60±3.61 0.65±14.64 -0.73±11.25
LC-l2 3.92±5.37 2.20±1.18 0.28±3.66 -0.90±4.13 1.13±15.45 0.62±12.20
LC-l3 4.25±5.24 1.94±1.21 0.35±3.87 -1.17±4.26 1.33±16.84 1.47±12.10
GRCS 4.63±5.49 3.69±1.37 2.06±3.69 2.89±5.02 2.88±15.96 2.20±12.63
GRC 5.19±5.03 3.32±1.17 2.62±4.16 2.90±4.68 4.15±16.91 4.10±13.22

B

IPPO -4.89±1.63 -4.89±2.92 0.87±7.89 0.45±9.42 -0.34±2.10 0.29±2.84
MAPPO -5.14±1.54 -4.28±2.78 0.33±7.82 0.58±9.84 -0.10±2.14 0.45±2.96

IL 5.11±1.18 4.24±2.61 0.18±7.53 0.11±9.48 0.09±2.35 -0.29±3.08
LC-l1 5.69±1.14 4.63±2.55 0.35±7.70 0.52±9.75 0.33±2.24 -0.13±3.28
LC-l2 5.59±1.25 4.86±2.59 0.12±7.54 0.75±10.01 0.24±2.28 0.33±3.31
LC-l3 5.66±1.24 4.81±2.59 0.30±7.57 0.40±9.70 0.09±2.03 0.33±2.9
GRCS 5.97±1.22 4.97±2.58 1.50±7.54 0.89±9.72 0.40±2.46 0.69±3.55
GRC 5.71±1.23 5.01±2.21 1.50±7.64 1.34±9.77 0.33±2.30 0.57±2.97

of policies over the datasets obtained with a different policy. We use
the widely adoptedWeighted Importance Sampling (WIS) algorithm
here as its simplicity and variance-reduction property. The second
one is a simulation system. We have developed a simulation system
that can mimic the online order dispatching workflow, and through
careful parameter tuning and calibration, the simulation fits the
revenue of the real online systemwell. Note that the simulation uses
GS for matching module as it is adopted online in platforms such
as Didi Chuxing [29]. As shown in Fig. 4, we plot the normalized
GMV curves of the simulator and real world in two peak periods
of a day for comparisons. The 𝑟2 between the simulator’s and the
real world’s normalized GMV is 0.986 and 0.863, and the Pearson
correlation is 0.998 and 0.977 with 𝑝-value 𝑝 < 0.000001.

When testing, OPE firstly estimates the behavior policy on the
testing dataset and then applies WIS for evaluation. For simulation,
we bootstrap orders from the testing dataset, and utilize simulator
to evaluate the performance of a policy. We also emphasize that this
simulation is not suitable for training online reinforcement learning
algorithms because it takes dozens of minutes to simulate a day in
the city. Such inefficiency struggles to meet the massive training
sample demands of online reinforcement learning algorithms.

4.3 Baselines and Metrics
Baselines. We consider the following baselines for comparison.

• GS. GS is currently the online matching algorithm in Didi Chux-
ing [29], which sorts the orders in descending prices as the pref-
erence list for the drivers, and sorts the drivers in ascending
pick-up distance as the preference list for passenger orders.

• IPPO [3], MAPPO [28]. Both are the state-of-the-art cooperative
MARL algorithms.

• CVnet [24]. CVnet is the previous state-of-the-art and deployed
algorithm specific for order dispatching. Note that the more
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Figure 4: Comparisons on the simulator’s and the real world’s
normalized GMV at morning and evening peak in city A.

recent [22, 25] are not considered here as their focuses are beyond
the scope of this work.

We consider the following variants of GRC for the ablation study.

• IL. Independent learning (IL) takes 𝜆1 = 0, 𝜆2 = 1 and ℎ = 0 in Eq.
(1). Intuitively, each agent in IL aims to maximize its own long
term reward independently.

• LC-lℎ, with ℎ ∈ {1, 2, 3}. LC-lℎ has 𝜆1 = 0 and 𝜆2 = 1 in Eq. (1),
while it incentivizes local cooperation by optimizing the local
aggregated reward of agents in Nℎ

𝑖
for each agent 𝑖 .

• GRCS. GRCS only considers the updating signal generated by
the squared difference of goal and ordinary states. That is, GRCS
assigns 𝜆1 = 1 and 𝜆2 = 0 in Eq. (1).

Metrics. We consider two metrics for evaluation. Order response
rate (ORR) describes the ratio between the number of finished
orders and the number of all emerged orders. Gross merchandise
volume (GMV) describes the total price of the finished orders.
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Table 2: Simulation results in city A and B. Testing is conducted on a 10-day bootstrapped dataset, and each entry represents
the mean and standard deviation of these tests. IORR and IGMV are the improved ratios in ORR and GMV respectively, when
compared to the GS algorithm.

City Algorithm All Day Morning Peak (06:30-09:30) Evening Peak (16:30-19:30)
IORR (%) IGMV (%) IORR (%) IGMV (%) IORR (%) IGMV (%)

A

IPPO -0.34±1.69 0.20±1.51 -0.14±1.76 -0.13±1.5 0.92±1.53 -0.17±1.44
MAPPO -0.16±1.59 0.20±1.47 0.23±1.40 -0.45±1.56 1.63±1.34 -0.19±1.40
CVnet 0.22±1.60 0.05±1.43 -0.35±1.44 -0.88±1.46 0.27±1.13 0.09±1.55
IL 0.16±1.57 -0.07±1.48 1.51±1.58 0.64±1.81 0.91±1.37 0.13±1.39

LC-l1 0.28±1.52 0.16±1.40 0.90±1.29 0.01±1.86 1.92±1.41 0.24±1.25
LC-l2 0.36±1.53 0.10±1.42 0.61±1.48 -0.54±1.45 1.28±1.28 0.15±1.37
LC-l3 0.25±1.55 0.03±1.34 1.60±1.53 -0.14±1.62 1.20±1.40 0.31±1.36
GRCS 0.94±1.92 0.12±1.49 1.87±1.40 0.97±1.41 2.02±1.95 1.16±1.34
GRC 1.58±1.49 0.42±1.35 1.95±1.45 1.21±1.43 2.40±1.77 1.51±1.63

B

IPPO 0.42±1.10 0.25±1.20 1.06±2.22 0.66±2.04 0.28±1.70 -0.17±2.19
MAPPO 0.33±1.25 0.07±1.17 0.11±2.19 0.28±2.11 -0.17±1.83 0.27±2.05
CVnet 0.77±1.19 0.32±1.01 0.33±1.99 0.78±2.21 0.07±1.77 0.51±2.10
IL 0.58±1.22 0.06±1.10 0.21±2.08 0.79±2.58 -0.03±1.81 0.54±2.44

LC-l1 0.74±1.04 0.40±0.94 1.16±2.45 0.50±2.38 0.48±1.84 0.34±2.20
LC-l2 1.03±1.08 0.28±1.03 0.86±2.55 0.41±2.34 0.17±1.56 -0.41±2.18
LC-l3 1.04±1.13 0.24±0.94 0.35±1.83 0.44±2.27 -0.27±1.42 0.07±2.23
GRCS 0.99±1.34 0.44±1.24 1.55±2.36 0.84±2.14 0.52±1.49 0.44±2.08
GRC 1.74±1.13 0.53±1.18 2.36±2.39 1.76±2.02 1.07±1.69 1.14±2.26

(a) DSG in real world (b) DSG in goal state (c) DSG in ordinary states (d) DSG by optimized policy

(e) CR in real world (f) CR in goal state (g) CR in ordinary states (h) CR by optimized policy

Figure 5: Visualizations of the predicted states in the morning peak at city A. Demand-supply gap (DSG) denotes the normalized
difference of unmatched orders and available drivers. Cancellation rate (CR) denotes the normalized ratio of cancellation from
the passengers. In (a-d), dark colors represent more drivers than orders, and the darker the color, the larger the gap. Light colors
represent more orders than drivers, and the lighter the color, the larger the gap. In (e-h), the darker the color, the higher the CR.

4.4 Experimental Results
4.4.1 Main Results and Ablation Study. Table 1 and 2 present the
results of the algorithm under OPE testing and simulation testing.
We test the algorithm’s performance not only over the entire day
but also during the two challenging peak periods within a single
day. GS and CVnet did not undergo OPE testing as they are not
stochastic algorithms and are not suitable for WIS evaluation.

From the results in the table, it can be observed that IPPO and
MAPPO have many negative test outcomes, indicating that their
performance is even inferior to that of the GS. This is due to the

difficulty of performing accurate credit assignment with a single
central reward signal in tasks with a large number of agents, result-
ing in policy training failure. The CVnet algorithm, by overcoming
the shortsightedness of GS, achieves some performance improve-
ment. However, the extent of its performance enhancement is far
less than GRC and GRCS. In different cities, different peak periods,
and tests on the real-world datasets and the sampled datasets, GRC
and GRCS can consistently exceed other baselines.

In the ablation study, we found it is hard to determine the best
one among the IL and the LC-lℎ. Their performance fluctuates with
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cities and peak periods. This is because it is challenging to ascertain
the optimal ℎ for optimization, as it is influenced by the local grid
features and similarities of specific cities. The GRCS algorithm
that only uses the goal-reaching loss also has consistently high
performance, but it falls short in testing on sampled datasets in
simulations. We surmise that this is due to the environment model
overfitting the real-world dataset. Therefore, the policy guided
by the goal state it generates also has certain overfitting results,
causing its performance to be slightly inferior under a new sampled
dataset. Neither of these two types of algorithms are sufficient to
achieve higher performance on their own. For GRC, it utilizes the
neighborhood range ℎ that is the most effective in all-day IGMV in
OPE test among LC-lℎ with ℎ ∈ {1, 2, 3} and IL (ℎ = 0) in each city.
It shows that GRC that combines both updating signals consistently
achieves the highest performance in various testing comparisons.

4.4.2 Visualization and Comparison of Predicted States. We visual-
ize and compare the predicted states from the environmental model
E. The compared states include the goal states (i.e., (b) and (f) in Fig.
5) and ordinary states (i.e., (c) and (g) in Fig. 5) of E’s predictions
for the behavior policy, and the ordinary states (i.e., (d) and (h) in
Fig. 5) of E’s predictions for the GRC optimized policy. We choose
two easily interpretable metrics, namely demand-supply gap (DSG)
and cancellation rate (CR), for the comparison, as shown in Fig. 5.
From the figure, it can be observed that the real city state exhibits
a clear imbalance in supply and demand, along with a high CR
in certain regions. In contrast, the DSG in the goal state is more
balanced, and the CR is lower, while the ordinary states are more
chaotic and worse in the two metrics than the goal state. (d) and
(h) represent the future states of E’s predictions for the optimized
policy. Compared to the real states, they have a more balanced DSG
and a lower CR, thanks to the training guidance of the goal states.

4.4.3 Influence of the Goal State Horizons. In this section, we inves-
tigate the influence of goal state horizons on the policy optimization.
We first trained an environmental model capable of predicting the
states within the next 6 steps (i.e., an hour). We set the horizon
of the goal state as 𝑖 , where 𝑖 ∈ {1, 2, 3, 4, 5, 6}. For different 𝑖 , we
sample and divide the states of the first 𝑖 time steps predicted by
the environmental model into goal states and ordinary states, and
optimize the policy using loss function (1) with ℎ = 0. The OPE
results shown in Table 3 suggest that as the horizon increases,
the performance firstly improves and then gradually declines. We
hypothesize that this is because the 2-step prediction considers a
longer-term goal state and optimizes the policy to reach it, thereby
improving the policy. However, predictions for more distant goal
states will have larger uncertainties, which weaken and offset the
policy optimization. Therefore, the goal state horizon needs to be
conservatively chosen, and large horizons should be avoided.

5 Related works
With the widespread popularity of online ride-hailing services, the
order dispatching decisions of online ride-hailing platforms have
aroused great interest among researchers. One line of works are
specifically interested in theoretically analyzing the algorithms’
worst-case performance, known as competitive ratios. To date, var-
ious algorithms have been proposed [1, 4, 7–9, 15] since Karp et al.

Table 3: OPE results in the morning peak in city B when the
goal state has different horizons.

Horizon of Goal (min) IORR (%) IGMV (%)
10 1.14±7.72 1.46±9.87
20 1.43±7.84 1.75±9.78
30 0.71±7.55 0.25±9.97
40 0.24±7.43 0.84±9.98
50 0.84±7.79 0.86±9.94
60 0.51±7.57 1.03±9.86

formulated the online bipartite matching (OBM) problem in the
1990s. However, the OBM problems studied in these works are
highly simplified, comparing to the OD problem. For instance, they
often assume the nodes are one-sided online [4, 8, 15], the edge has
no weights [7, 9], only one node appears in each time slot [1, 15],
or there is no active departure of nodes in OBM [1, 7, 9, 15]. These
simplifications have prevented these algorithms from being applied
to real-world OD problems, to the best of our knowledge.

Another line of works exploit MARL to enable the distributed
decision-making abilities of drivers [11, 23, 26, 30]. In these works,
there is no central server ormatching algorithm to gather andmatch
the drivers and orders. Conversely, each driver makes his/her own
decision in a distributed way to select orders in the surrounding
region. While promising, such approaches are not applicable in the
current online-hailing platforms, as the stability and sustainability
of large-scale distributed systems still need to be verified.

Furthermore, recent works specified for OD in the online ride-
hailing platforms are [22, 24, 25, 27]. The core idea of the series of
works lies in learning and adding the values into edge weights to
consider the future revenue of destination [27]. Later, [24] proposed
to use spatial embeddings and deep models to predict such values,
[25] additionally considered the fleet management problem, and
[22] deployed online learning module to update the values in real
time. However, these works can easily lead to insufficient supply in
cold regions, resulting in revenue loss. The core reason found in this
study is that the value setting of regions within the same time step
is independent of each other. Instead, this work models the impact
between the values of different regions from a cooperative game
theory, and proposes the GRC algorithm to solve the game. The
effectiveness of the algorithm has been confirmed by experimental
results over various time periods in different cities.

6 Conclusion
In this work, we rethink the recent works for OD and identifies their
sub-optimality due to ignoring the impacts of the region values over
other regions. Instead, we model such impacts with game and pro-
pose GRC to solve the game based on a novel goal-reaching credit
assignment. Experiments validate GRC as it steadily outperforms
the baseline algorithms across different cities and peak periods.

Acknowledgments
This work was supported by NSF China (No. U21A20519,
U20A20181, 62372288, 62202298), and by DiDi GAIA Research Col-
laboration Plan.



KDD ’24, August 25–29, 2024, Barcelona, Spain. Zhaoxing Yang et al.

References
[1] Mohammad Ali Alomrani, Reza Moravej, and Elias B Khalil. 2021. Deep policies

for online bipartite matching: A reinforcement learning approach. arXiv preprint
arXiv:2109.10380 (2021).

[2] David Brandfonbrener, Will Whitney, Rajesh Ranganath, and Joan Bruna. 2021.
Offline RL without Off-Policy Evaluation. In NeurIPS.

[3] Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviy-
chuk, Philip HS Torr, Mingfei Sun, and Shimon Whiteson. 2020. Is independent
learning all you need in the starcraft multi-agent challenge? arXiv preprint
arXiv:2011.09533 (2020).

[4] Matthew Fahrbach, Zhiyi Huang, Runzhou Tao, and Morteza Zadimoghaddam.
2022. Edge-weighted online bipartite matching. J. ACM (2022).

[5] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and
Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In AAAI.

[6] David Gale and Lloyd S Shapley. 1962. College admissions and the stability of
marriage. The American Mathematical Monthly (1962).

[7] Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang, and
Xue Zhu. 2018. How to match when all vertices arrive online. In STOC.

[8] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. 2019. Online
vertex-weighted bipartite matching: Beating 1-1/e with random arrivals. ACM
Transactions on Algorithms (2019).

[9] Zhiyi Huang, Zhihao Gavin Tang, Xiaowei Wu, and Yuhao Zhang. 2020. Fully
Online Matching II: Beating Ranking and Water-filling. In FOCS.

[10] Haiming Jin, Yifei Wei, Zhaoxing Yang, Zirui Liu, and Guiyun Fan. 2023. Multi-
Intersection Management for Connected Autonomous Vehicles by Reinforcement
Learning. In ICDCS.

[11] Jiarui Jin, Ming Zhou, Weinan Zhang, Minne Li, Zilong Guo, Zhiwei Qin, Yan
Jiao, Xiaocheng Tang, Chenxi Wang, Jun Wang, Guobin Wu, and Jieping Ye.
2019. CoRide: Joint Order Dispatching and Fleet Management for Multi-Scale
Ride-Hailing Platforms. In CIKM.

[12] R. M. Karp, U. V. Vazirani, and V. V. Vazirani. 1990. An Optimal Algorithm for
On-Line Bipartite Matching. In STOC.

[13] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. 2022. Offline Reinforcement
Learning with Implicit Q-Learning. In ICLR.

[14] Sergey Levine, Aviral Kumar, G. Tucker, and Justin Fu. 2020. Offline Reinforce-
ment Learning: Tutorial, Review, and Perspectives on Open Problems. arXiv
preprint arXiv:2005.01643 (2020).

[15] Pengfei Li, Jianyi Yang, and Shaolei Ren. 2023. Learning for Edge-Weighted Online
Bipartite Matching with Robustness Guarantees. arXiv preprint arXiv:2306.00172
(2023).

[16] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor
Mordatch. 2017. Multi-agent actor-critic for mixed cooperative-competitive
environments. In NeurIPS.

[17] James Munkres. 1957. Algorithms for the assignment and transportation prob-
lems. J. Soc. Indust. Appl. Math. (1957).

[18] OpenAI. 2023. Introducing ChatGPT. https://openai.com/blog/chatgpt Sep. 20.
[19] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela

Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instructions with human feedback. In
NeurIPS.

[20] Doina Precup, Richard S. Sutton, and Satinder P. Singh. 2000. Eligibility Traces
for Off-Policy Policy Evaluation. In ICML.

[21] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Far-
quhar, Jakob Foerster, and Shimon Whiteson. 2020. Monotonic value function
factorisation for deep multi-agent reinforcement learning. The Journal of Machine
Learning Research (2020).

[22] Soheil Sadeghi Eshkevari, Xiaocheng Tang, Zhiwei Qin, JinhanMei, Cheng Zhang,
Qianying Meng, and Jia Xu. 2022. Reinforcement Learning in the Wild: Scalable
RL Dispatching Algorithm Deployed in Ridehailing Marketplace. In KDD.

[23] Jiahui Sun, Haiming Jin, Zhaoxing Yang, Lu Su, and Xinbing Wang. 2022. Op-
timizing Long-Term Efficiency and Fairness in Ride-Hailing via Joint Order
Dispatching and Driver Repositioning. In KDD.

[24] Xiaocheng Tang, Zhiwei Qin, Fan Zhang, Zhaodong Wang, Zhe Xu, Yintai Ma,
Hongtu Zhu, and Jieping Ye. 2019. A deep value-network based approach for
multi-driver order dispatching. In KDD.

[25] Xiaocheng Tang, Fan Zhang, Zhiwei Qin, Yansheng Wang, Dingyuan Shi,
Bingchen Song, Yongxin Tong, Hongtu Zhu, and Jieping Ye. 2021. Value Function
is All You Need: A Unified Learning Framework for Ride Hailing Platforms. In
KDD.

[26] EnshuWang, Rong Ding, Zhaoxing Yang, Haiming Jin, Chenglin Miao, Lu Su, Fan
Zhang, Chunming Qiao, and Xinbing Wang. 2022. Joint Charging and Relocation
Recommendation for E-Taxi Drivers via Multi-Agent Mean Field Hierarchical
Reinforcement Learning. IEEE Transactions on Mobile Computing (2022).

[27] Zhe Xu, Zhixin Li, Qingwen Guan, Dingshui Zhang, Qiang Li, Junxiao Nan,
Chunyang Liu, Wei Bian, and Jieping Ye. 2018. Large-Scale Order Dispatch in
On-Demand Ride-Hailing Platforms: A Learning and Planning Approach. In
KDD.

[28] Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen,
and Yi Wu. 2022. The surprising effectiveness of ppo in cooperative multi-agent
games. In NeurIPS.

[29] Chen Zhong. 2023. Understanding of Didi’s Trading Strategy: Driver Order
Matching. https://mp.weixin.qq.com/s/i8IIaMYaFub0a9M9MtFgSw. [Online;
accessed 7-Nov-2023].

[30] Ming Zhou, Jiarui Jin, Weinan Zhang, Zhiwei Qin, Yan Jiao, ChenxiWang, Guobin
Wu, Yong Yu, and Jieping Ye. 2019. Multi-Agent Reinforcement Learning for
Order-Dispatching via Order-Vehicle Distribution Matching. In CIKM.

A Extra Experiments
A.1 Comparisons of Different Matching

Algorithms
The GRC framework is agnostic to the underlying matching algo-
rithm, such that either KM or GS can be used to match drivers and
passenger orders based on the output weights from a GRC policy.
In this subsection, we investigate the differences in terms of GMV
and pick-up distance when KM or GS is used separately. The results
highlight the unique properties of KM and GS and shed light on
the trade-offs to be considered for industrial deployment.

In particular, we also add penalties on the pick-up distance into
the weights when KM is used, as commonly adopted in previous
works [22, 24, 25, 27]: for each 𝑐 ∈ {0.0, 0.5, 1.0, 2.0}, KM-𝑐 assigns
𝜏𝑜 − 𝑐 · (pick-up distance) to each edge, where 𝜏𝑜 is defined in Sec.
2.2. The IGMV and pick-up distance comparisons are shown in
Table 4, where IGMV is the improved GMV versus that of GS. We
can observe that, KM-0.0 dominates others in IGMV but incurs the
largest pick-up distance. With larger 𝑐 , both the pick-up distance
and IGMV of KM decreases heavily. GS achieves a moderate balance
between the two objectives, which is preferable versus KM, as the
latter requires an exhaustive search for the 𝑐 to reach such balance.
We further compares the probability for different ranks of drivers
(the driver’s rank is lower when the pickup distance is smaller)
to pick up the passengers in Fig. 6. Notably, GS has the highest
probability for matching the nearest driver to each passenger, while
KM has lower probabilities and KM-0.0 performs worst.

Table 4: Comparisons on the IGMV and pick-up distance
when GS or KM (with penalty) acts as the underlying match-
ing algorithm for GRC.

Matching Alg. IGMV (%) Pick-up Distance (km)
GS 1.00±0.00 0.920±0.783

KM-0.0 3.78±0.76 1.903±0.768
KM-0.5 -0.34±0.81 0.923±0.786
KM-1.0 -0.22±0.78 0.919±0.783
KM-2.0 -0.15±0.77 0.912±0.778

B Implementation Details
In experiments, each local state has statistic information of five time
steps, including the past three time steps and the same time step over
the past two days. For each time step, the used statistic information
is 25-d, where 17-d contains information like the number of orders,
the number of idle drivers, the cancellations numbers and many
others. The left 8-d is the grid id. The action is a scalar. The policy
used is a 4-layer linear network, with hidden dimension 32 and relu
activation function. The encoder and decoder of the environment

https://openai.com/blog/chatgpt
https://mp.weixin.qq.com/s/i8IIaMYaFub0a9M9MtFgSw
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Figure 6: Comparisons on the probability of passengers being
picked up by drivers at different distance ranks. The x-axis
represents the rank of the drivers in terms of the pick-up
distance, i.e., the less pickup distance, the lower the rank.
The y-axis represents the probability of driver’s rank in the
matched driver-order pairs.

model both contain 3 GCN layers, with hidden dimension 256 and
relu activation function. The scoring model also uses 3 GCN layers,

with hidden dimension 256 and relu activation function. The batch
size is 1024. The optimizer used is Adam, with learning rate 0.0003.
The 𝐾,𝑘 used in two cities are 10, 2 and 5, 1, respectively.

C Comparisons on Demand Supply Gap
Following the suggestions of the reviewers, we reproduce a simpli-
fied version of the GRC algorithm on the public dataset of Chengdu
city from November 2016, demonstrate the reduction effect of GRC
on drivers concentration in hot regions, and verify this work’s mo-
tivation. Code can be found at https://github.com/Zhaoxing1125/
GRC.

Fig. 7 illustrates the comparison of the absolute value of the
supply-demand difference in the city at different times. The hor-
izontal axis represents ten intervals from low to high, showing
the binned order numbers waiting to serve. It is clear from the
figure that in areas with more orders (hot regions), the MDP al-
gorithm (KDD-18) accumulates more vehicles than the direct KM
algorithm, resulting in excessive drivers concentration. However,
the GRC algorithm relatively reduces such drivers concentration.
Fig. 8 divides the regions into cold and hot regions and plots the
supply-demand difference curve evolving over time. It can be seen
that the supply-demand difference of the GRC algorithm is reduced
compared to the MDP algorithm in cold regions, and during peak
hours in hot regions, the supply-demand difference with the GRC
algorithm is also reduced.

https://github.com/Zhaoxing1125/GRC
https://github.com/Zhaoxing1125/GRC
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Figure 7: Absolute supply demand gap in 08:00, 08:30, 09:00, and 09:30.
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Figure 8: Absolute supply demand gap curve in cold regions and hot regions.
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